Q 10

In the circuit shown in figure $E_1=3$ V, $E_2=2$ V, $E_3=1$ V and $R=r_1=r_2=r_3=1$ Ω . (1981)

- (a) Find the potential difference between the points A and B and the currents through each branch.
- (b) If r_2 is short circuited and the point A is connected to point B, find the currents through E_1 , E_2 , E_3 and the resistor R.

Sol. Let i_1 , i_2 , and i_3 be the currents through the batteries $E_1 = 3$ V, $E_2 = 2$ V, $E_3 = 1$ V, respectively.

There is no current through $R=1~\Omega$. Apply Kirchhoff's junction law at node C to get

$$i_1 + i_2 + i_3 = 0. (1)$$

Apply Kirchhoff's loop law in the upper and lower loops to get

$$3 - i_1 + i_2 - 2 = 0, (2)$$

$$2 - i_2 + i_3 - 1 = 0. (3)$$

Solve equations (1)-(3) to get $i_1 = 1$ A, $i_2 = 0$ A, and $i_3 = -1$ A. Since $i_2 = 0$ A and current through R is zero, $V_{AB} = V_{CB} = E_2 = 2$ V.

The circuit after shorting $r_2 = 1 \Omega$ and connecting point A to B is shown in the figure.

Apply Kirchhoff's loop law in loops ABCDA, FECBF, and BCHGB to get

$$2 - (i_1 + i_2 + i_3) = 0, (4)$$

$$3 - i_1 - 2 = 0, (5)$$

$$2 + i_3 - 1 = 0. ag{6}$$

Solve equations (4)-(6) to get $i_1 = 1$ A, $i_2 = 2$ A, and $i_3 = -1$ A. The current through the resistor R is $i_1 + i_2 + i_3 = 1 + 2 - 1 = 2$ A.

Ans. (a) 2 V, 1 A, 0, -1 A (b) 1 A, 2 A, -1 A,